Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 646
Filtrar
1.
Sci Rep ; 14(1): 7844, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570726

RESUMO

Obesity, a worldwide epidemic, leads to various metabolic disorders threatening human health. In response to stress or fasting, glucocorticoid (GC) levels are elevated to promote food intake. This involves GC-induced expression of the orexigenic neuropeptides in agouti-related protein (AgRP) neurons of the hypothalamic arcuate nucleus (ARC) via the GC receptor (GR). Here, we report a selective GR modulator (SGRM) that suppresses GR-induced transcription of genes with non-classical glucocorticoid response elements (GREs) such as Agrp-GRE, but not with classical GREs, and via this way may serve as a novel anti-obesity agent. We have identified a novel SGRM, 2-O-trans-p-coumaroylalphitolic acid (Zj7), a triterpenoid extracted from the Ziziphus jujube plant, that selectively suppresses GR transcriptional activity in Agrp-GRE without affecting classical GREs. Zj7 reduces the expression of orexigenic genes in the ARC and exerts a significant anorexigenic effect with weight loss in both high fat diet-induced obese and genetically obese db/db mouse models. Transcriptome analysis showed that Zj7 represses the expression of a group of orexigenic genes including Agrp and Npy induced by the synthetic GR ligand dexamethasone (Dex) in the hypothalamus. Taken together, Zj7, as a selective GR modulator, showed beneficial metabolic activities, in part by suppressing GR activity in non-classical GREs in orexigenic genes. This study demonstrates that a potential anorexigenic molecule may allow GRE-specific inhibition of GR transcriptional activity, which is a promising approach for the treatment of metabolic disorders.


Assuntos
Doenças Metabólicas , Receptores de Glucocorticoides , Camundongos , Animais , Humanos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Proteína Relacionada com Agouti/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo
2.
Mol Autism ; 15(1): 14, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570876

RESUMO

BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.


Assuntos
Transtorno Autístico , Animais , Camundongos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Hipotálamo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo
3.
Cell Rep ; 43(3): 113900, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38460132

RESUMO

Iron overload is closely associated with metabolic dysfunction. However, the role of iron in the hypothalamus remains unclear. Here, we find that hypothalamic iron levels are increased, particularly in agouti-related peptide (AgRP)-expressing neurons in high-fat-diet-fed mice. Using pharmacological or genetic approaches, we reduce iron overload in AgRP neurons by central deferoxamine administration or transferrin receptor 1 (Tfrc) deletion, ameliorating diet-induced obesity and related metabolic dysfunction. Conversely, Tfrc-mediated iron overload in AgRP neurons leads to overeating and adiposity. Mechanistically, the reduction of iron overload in AgRP neurons inhibits AgRP neuron activity; improves insulin and leptin sensitivity; and inhibits iron-induced oxidative stress, endoplasmic reticulum stress, nuclear factor κB signaling, and suppression of cytokine signaling 3 expression. These results highlight the critical role of hypothalamic iron in obesity development and suggest targets for treating obesity and related metabolic disorders.


Assuntos
Sobrecarga de Ferro , Doenças Metabólicas , Camundongos , Animais , Proteína Relacionada com Agouti/metabolismo , Obesidade/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/metabolismo , Ferro/metabolismo , Camundongos Endogâmicos C57BL
4.
Nature ; 628(8009): 826-834, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538787

RESUMO

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Assuntos
Ingestão de Alimentos , Células Ependimogliais , Temperatura Alta , Hipotálamo , Neurônios , Núcleos Parabraquiais , Fator A de Crescimento do Endotélio Vascular , Animais , Hipotálamo/metabolismo , Hipotálamo/citologia , Camundongos , Masculino , Neurônios/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Células Ependimogliais/metabolismo , Células Ependimogliais/citologia , Dopamina/metabolismo , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiologia , Proteína Relacionada com Agouti/metabolismo , Feminino , Sensação Térmica/fisiologia , Vias Neurais/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/citologia , Comportamento Alimentar/fisiologia
5.
Nat Commun ; 15(1): 2131, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459068

RESUMO

AgRP neurons drive hunger, and excessive nutrient intake is the primary driver of obesity and associated metabolic disorders. While many factors impacting central regulation of feeding behavior have been established, the role of microRNAs in this process is poorly understood. Utilizing unique mouse models, we demonstrate that miR-33 plays a critical role in the regulation of AgRP neurons, and that loss of miR-33 leads to increased feeding, obesity, and metabolic dysfunction in mice. These effects include the regulation of multiple miR-33 target genes involved in mitochondrial biogenesis and fatty acid metabolism. Our findings elucidate a key regulatory pathway regulated by a non-coding RNA that impacts hunger by controlling multiple bioenergetic processes associated with the activation of AgRP neurons, providing alternative therapeutic approaches to modulate feeding behavior and associated metabolic diseases.


Assuntos
Fome , MicroRNAs , Animais , Camundongos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Fome/fisiologia , Hipotálamo/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo
6.
Phytomedicine ; 126: 155297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342019

RESUMO

BACKGROUND: Research on the imbalance of proopiomelanocortin (POMC)/agouti-related protein (AgRP) neurons in the hypothalamus holds potential insights into the pathophysiology of diabetes. Jinkui Shenqi pills (JSP), a prevalent traditional Chinese medicine, regulate hypothalamic function and treat diabetes. PURPOSE: To investigate the hypoglycemic effect of JSP and explore the probable mechanism in treating diabetes. METHODS: A type 2 diabetes mouse model was used to investigate the pharmacodynamics of JSP. The glucose-lowering efficacy of JSP was assessed through various metrics including body weight, food consumption, fasting blood glucose (FBG), serum insulin levels, and an oral glucose tolerance test (OGTT). To elucidate the modulatory effects of JSP on hypothalamic mechanisms, we quantified the expression and activity of POMC and AgRP and assessed the insulin-mediated phosphoinositide 3-kinase (PI3K)/protein kinase A (AKT)/forkhead box O1 (FOXO1) pathway in diabetic mice via western blotting and immunohistochemistry. Additionally, primary hypothalamic neurons were exposed to high glucose and palmitic acid levels to induce insulin resistance, and the influence of JSP on POMC/AgRP protein expression and activation was evaluated by PI3K protein inhibition using western blotting and immunofluorescence. RESULTS: Medium- and high-dose JSP treatment effectively inhibited appetite, resulting in a steady declining trend in body weight, FBG, and OGTT results in diabetic mice (p < 0.05). These JSP groups also had significantly increased insulin levels (p < 0.05). Importantly, the medium-dose group exhibited notable protection of hypothalamic neuronal and synaptic structures, leading to augmentation of dendritic length and branching (p < 0.05). Furthermore, low-, medium-, and high-dose JSP groups exhibited increased phosphorylated (p) INSR, PI3K, pPI3K, AKT, and pAKT expression, as well as decreased FOXO1 and increased pFOXO1 expression, indicating improved hypothalamic insulin resistance in diabetic mice (p < 0.05). Treatment with 10% JSP-enriched serum produced a marked elevation of both expression and activation of POMC (p < 0.05), with a concurrent reduction in AgRP expression and activation within primary hypothalamic neurons (p < 0.05). Intriguingly, these effects could be attributed to the regulatory dynamics of PI3K activity. CONCLUSION: Our findings suggest that JSP can ameliorate diabetes by regulating POMC/AgRP expression and activity. The insulin-mediated PI3K/AKT/FOXO1 pathway plays an important regulatory role in this intricate process.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Resistência à Insulina , Camundongos , Animais , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Peso Corporal
7.
J Neuroendocrinol ; 36(3): e13370, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38344844

RESUMO

Excess levels of circulating androgens during prenatal or peripubertal development are an important cause of polycystic ovary syndrome (PCOS), with the brain being a key target. Approximately half of the women diagnosed with PCOS also experience metabolic syndrome; common features including obesity, insulin resistance and hyperinsulinemia. Although a large amount of clinical and preclinical evidence has confirmed this relationship between androgens and the reproductive and metabolic features of PCOS, the mechanisms by which androgens cause this dysregulation are unknown. Neuron-specific androgen receptor knockout alleviates some PCOS-like features in a peripubertal dihydrotestosterone (DHT) mouse model, but the specific neuronal populations mediating these effects are undefined. A candidate population is the agouti-related peptide (AgRP)-expressing neurons, which are important for both reproductive and metabolic function. We used a well-characterised peripubertal androgenized mouse model and Cre-loxP transgenics to investigate whether deleting androgen receptors specifically from AgRP neurons can alleviate the induced reproductive and metabolic dysregulation. Androgen receptors were co-expressed in 66% of AgRP neurons in control mice, but only in <2% of AgRP neurons in knockout mice. The number of AgRP neurons was not altered by the treatments. Only 20% of androgen receptor knockout mice showed rescue of DHT-induced androgen-induced anovulation and acyclicity. Furthermore, androgen receptor knockout did not rescue metabolic dysfunction (body weight, adiposity or glucose and insulin tolerance). While we cannot rule out developmental compensation in our model, these results suggest peripubertal androgen excess does not markedly influence Agrp expression and does not dysregulate reproductive and metabolic function through direct actions of androgens onto AgRP neurons.


Assuntos
Androgênios , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Camundongos , Gravidez , Proteína Relacionada com Agouti/metabolismo , Androgênios/metabolismo , Di-Hidrotestosterona/farmacologia , Camundongos Knockout , Neurônios/metabolismo , Obesidade/metabolismo , Peptídeos/farmacologia , Receptores Androgênicos/metabolismo , Virilismo/metabolismo
8.
Nat Metab ; 6(3): 473-493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38378998

RESUMO

Agouti-related peptide (AgRP)-expressing and proopiomelanocortin (POMC)-expressing neurons reciprocally regulate food intake. Here, we combine non-interacting recombinases to simultaneously express functionally opposing chemogenetic receptors in AgRP and POMC neurons for comparing metabolic responses in male and female mice with simultaneous activation of AgRP and inhibition of POMC neurons with isolated activation of AgRP neurons or isolated inhibition of POMC neurons. We show that food intake is regulated by the additive effect of AgRP neuron activation and POMC neuron inhibition, while systemic insulin sensitivity and gluconeogenesis are differentially modulated by isolated-versus-simultaneous regulation of AgRP and POMC neurons. We identify a neurocircuit engaging Npy1R-expressing neurons in the paraventricular nucleus of the hypothalamus, where activated AgRP neurons and inhibited POMC neurons cooperate to promote food consumption and activate Th+ neurons in the nucleus tractus solitarii. Collectively, these results unveil how food intake is precisely regulated by the simultaneous bidirectional interplay between AgRP and POMC neurocircuits.


Assuntos
Neurônios , Pró-Opiomelanocortina , Camundongos , Masculino , Feminino , Animais , Pró-Opiomelanocortina/metabolismo , Proteína Relacionada com Agouti/metabolismo , Neurônios/metabolismo , Hipotálamo/metabolismo
10.
Eur Rev Med Pharmacol Sci ; 28(1): 163-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235868

RESUMO

OBJECTIVE: This study aimed to elucidate the possible effects of the acute/long-term infusion of glucagon in the brain as the regulatory role on the endocrine secretions of the pancreas. MATERIALS AND METHODS: Ninety male Wistar albino rats were divided as Control, artificial Cerebrospinal Fluid (aCSF) (120 min), Glucagon (120 min), pancreatic denervation (PD)+aCSF (120 min), PD+Glucagon (120 min), aCSF (7 days), Glucagon (7 days), PD+aCSF (7 days) and PD+Glucagon (7 days). Glucagon and solvent (aCSF) were administered after pancreatic denervation (PD) by Hamilton syringe and osmotic mini pump (1 µg/10 µl/min) in the third ventricle of the brain. RESULTS: Acute intracerebroventricular (icv) administration of glucagon resulted in an elevation of glucagon levels and a concurrent reduction in blood glucose levels. Furthermore, in both the PD+aCSF (7 days) and PD+Glucagon (7 days) groups, there was a notable decrease in propiomelanocortin (POMC) and agouti-related protein (AgRP). Significant changes were observed in feed consumption and body weight, as well as pancreatic glucagon levels, with a simultaneous decrease in insulin levels in the PD (7 days), Glucagon (7 days), and PD+Glucagon (7 days) groups. These alterations were statistically significant when compared to the control group (p<0.05). CONCLUSIONS: The research outcomes established that pancreas-secreted glucagon functions as a neurohormone within the brain, activating central pathways linked to blood glucose regulation. The presence of glucagon led to a decrease in POMC levels. Surprisingly, this reduction in POMC resulted in the suppression of AgRP. Contrary to expectations, the suppression of AgRP led to an increase in food intake rather than a decrease. As already highlighted in the results section, it was emphasized that POMC may play a more significant role than AgRP in influencing feeding behavior.


Assuntos
Glicemia , Glucagon , Ratos , Animais , Masculino , Proteína Relacionada com Agouti/metabolismo , Glicemia/metabolismo , Pró-Opiomelanocortina/metabolismo , Sistema Nervoso Central , Homeostase , Ratos Wistar , Neurotransmissores
11.
Mol Metab ; 80: 101886, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246589

RESUMO

OBJECTIVE: The central melanocortin system is essential for the regulation of food intake and body weight. Agouti-related protein (AgRP) is the sole orexigenic component of the central melanocortin system and is conserved across mammalian species. AgRP is currently known to be expressed exclusively in the mediobasal hypothalamus, and hypothalamic AgRP-expressing neurons are essential for feeding. Here we characterized a previously unknown population of AgRP cells in the mouse hindbrain. METHODS: Expression of AgRP in the hindbrain was investigated using gene expression analysis, single-cell RNA sequencing, immunofluorescent analysis and multiple transgenic mice with reporter expressions. Activation of AgRP neurons was achieved by Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and by transcranial focal photo-stimulation using a step-function opsin with ultra-high light sensitivity (SOUL). RESULTS: AgRP expressing cells were present in the area postrema (AP) and the adjacent subpostrema area (SubP) and commissural nucleus of the solitary tract (cNTS) of the mouse hindbrain (termed AgRPHind herein). AgRPHind cells consisted of locally projecting neurons as well as tanycyte-like cells. Food deprivation stimulated hindbrain Agrp expression as well as neuronal activity of subsets of AgRPHind cells. In adult mice that lacked hypothalamic AgRP neurons, chemogenetic activation of AgRP neurons resulted in hyperphagia and weight gain. In addition, transcranial focal photo-stimulation of hindbrain AgRP cells increased food intake in adult mice with or without hypothalamic AgRP neurons. CONCLUSIONS: Our study indicates that the central melanocortin system in the hindbrain possesses an orexigenic component, and that AgRPHind neurons stimulate feeding independently of hypothalamic AgRP neurons.


Assuntos
Hipotálamo , Melanocortinas , Camundongos , Animais , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Camundongos Transgênicos , Melanocortinas/metabolismo , Rombencéfalo/metabolismo , Mamíferos/metabolismo
12.
Cell Rep ; 43(1): 113630, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165803

RESUMO

Opioids are generally known to promote hedonic food consumption. Although much of the existing evidence is primarily based on studies of the mesolimbic pathway, endogenous opioids and their receptors are widely expressed in hypothalamic appetite circuits as well; however, their role in homeostatic feeding remains unclear. Using a fluorescent opioid sensor, deltaLight, here we report that mediobasal hypothalamic opioid levels increase by feeding, which directly and indirectly inhibits agouti-related protein (AgRP)-expressing neurons through the µ-opioid receptor (MOR). AgRP-specific MOR expression increases by energy surfeit and contributes to opioid-induced suppression of appetite. Conversely, its antagonists diminish suppression of AgRP neuron activity by food and satiety hormones. Mice with AgRP neuron-specific ablation of MOR expression have increased fat preference without increased motivation. These results suggest that post-ingestion release of endogenous opioids contributes to AgRP neuron inhibition to shape food choice through MOR signaling.


Assuntos
Analgésicos Opioides , Neurônios , Animais , Camundongos , Proteína Relacionada com Agouti/metabolismo , Analgésicos Opioides/farmacologia , Ingestão de Alimentos , Hipotálamo/metabolismo , Neurônios/metabolismo , Transdução de Sinais
13.
Nutrition ; 120: 112333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38271759

RESUMO

OBJECTIVE: The aim was to investigate the intergenerational inheritance induced by a high-fat diet on sensitivity to insulin and leptin in the hypothalamic control of satiety in second-generation offspring, which were fed a control diet. METHODS: Progenitor rats were fed a high-fat or a control diet for 59 d until weaning. The first-generation and second-generation offspring were fed the control diet until 90 d of age. Body mass and adiposity index of the progenitors fed the high-fat diet and the second-generation offspring from progenitors fed the high-fat diet were evaluated as were the gene expression of DNA methyltransferase 3a, angiotensin-converting enzyme type 2, angiotensin II type 2 receptor, insulin and leptin signaling pathway (insulin receptor, leptin receptor, insulin receptor substrate 2, protein kinase B, signal transducer and transcriptional activator 3, pro-opiomelanocortin, and neuropeptide Agouti-related protein), superoxide dismutase activity, and the concentration of carbonyl protein and satiety-regulating neuropeptides, pro-opiomelanocortin and neuropeptide Agouti-related protein, in the hypothalamus. RESULTS: The progenitor group fed a high-fat diet showed increased insulin resistance and reduced insulin-secreting beta-cell function and reduced food intake, without changes in caloric intake. The second-generation offspring from progenitors fed a high-fat diet, compared with second-generation offspring from progenitors fed a control diet group, had decreased insulin-secreting beta-cell function and increased food and caloric intake, insulin resistance, body mass, and adiposity index. Furthermore, second-generation offspring from progenitors fed a high-fat diet had increased DNA methyltransferase 3a, neuropeptide Agouti-related protein, angiotensin II type 1 receptor, and nicotinamide adenine dinucleotide phosphate oxidase p47phox gene expression, superoxide dismutase activity, and neuropeptide Agouti-related protein concentration in the hypothalamus. In addition, there were reduced in gene expression of the insulin receptor, leptin receptor, insulin receptor substrate 2, pro-opiomelanocortin, angiotensin II type 2 receptor, angiotensin-converting enzyme type 2, and angiotensin-(1-7) receptor and pro-opiomelanocortin concentration in the second-generation offspring from progenitors fed the high-fat diet. CONCLUSIONS: Overall, progenitors fed a high-fat diet induced changes in the hypothalamic control of satiety of the second-generation offspring from progenitors fed the high-fat diet through intergenerational inheritance. These changes led to hyperphagia, alterations in the hypothalamic pathways of insulin, and leptin and adiposity index increase, favoring the occurrence of different cardiometabolic disorders in the second-generation offspring from progenitors fed the high-fat diet fed only with the control diet.


Assuntos
Resistência à Insulina , Neuropeptídeos , Ratos , Animais , Leptina/metabolismo , Insulina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteína Relacionada com Agouti/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Receptores para Leptina/genética , DNA Metiltransferase 3A , Ratos Sprague-Dawley , Obesidade/genética , Obesidade/metabolismo , Hiperfagia/complicações , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Superóxido Dismutase/metabolismo , Angiotensinas/metabolismo
14.
J Neuroendocrinol ; 36(1): e13357, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056947

RESUMO

This study furthers the investigation of how pituitary adenylate cyclase activating polypeptide (PACAP) and the PAC1 receptor (PAC1R) regulate the homeostatic energy balance circuitry. We hypothesized that apoptotic ablation of PACAP neurones in the hypothalamic ventromedial nucleus (VMN) would affect both energy intake and energy expenditure. We also hypothesized that selective PAC1R knockdown would impair the PACAP-induced excitation in anorexigenic proopiomelanocortin (POMC) neurones and inhibition of orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurones in the hypothalamic arcuate nucleus (ARC). The results show CASPASE-3-induced ablation of VMN PACAP neurones leads to increased energy intake and meal frequency as well as decreased energy expenditure in lean animals. The effects were more robust in obese males, whereas we saw the opposite effects in obese females. We then utilized visualized whole-cell patch clamp recordings in hypothalamic slices. PAC1R knockdown in POMC neurones diminishes the PACAP-induced depolarization, increase in firing, decreases in energy intake and meal size, as well as increases in CO2 production and O2 consumption. Similarly, the lack of expression of the PAC1R in NPY/AgRP neurones greatly attenuates the PACAP-induced hyperpolarization, suppression of firing, decreases in energy intake and meal frequency, as well as increases in energy expenditure. The PACAP response in NPY/AgRP neurones switched from predominantly inhibitory to excitatory in fasted animals. Finally, the anorexigenic effect of PACAP was potentiated when oestradiol was injected into the ARC in ovariectomized females. This study demonstrates the critical role of anorexigenic VMN PACAP neurones and the PAC1R in exciting POMC and inhibiting NPY/AgRP neurons to control homeostatic feeding.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Pró-Opiomelanocortina , Animais , Masculino , Feminino , Pró-Opiomelanocortina/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Neuropeptídeo Y/metabolismo , Proteína Relacionada com Agouti/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Dieta , Neurônios/metabolismo , Obesidade/metabolismo
15.
Aging Cell ; 23(2): e14047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994388

RESUMO

Orexigenic neurons expressing agouti-related protein (AgRP) and neuropeptide Y in the arcuate nucleus (ARC) of the hypothalamus are activated in response to dynamic variations in the metabolic state, including exercise. We previously observed that carnitine palmitoyltransferase 1a (CPT1A), a rate-limiting enzyme of mitochondrial fatty acid oxidation, is a key factor in AgRP neurons, modulating whole-body energy balance and fluid homeostasis. However, the effect of CPT1A in AgRP neurons in aged mice and during exercise has not been explored yet. We have evaluated the physical and cognitive capacity of adult and aged mutant male mice lacking Cpt1a in AgRP neurons (Cpt1a KO). Adult Cpt1a KO male mice exhibited enhanced endurance performance, motor coordination, locomotion, and exploration compared with control mice. No changes were observed in anxiety-related behavior, cognition, and muscle strength. Adult Cpt1a KO mice showed a reduction in gastrocnemius and tibialis anterior muscle mass. The cross-sectional area (CSA) of these muscles were smaller than those of control mice displaying a myofiber remodeling from type II to type I fibers. In aged mice, changes in myofiber remodeling were maintained in Cpt1a KO mice, avoiding loss of physical capacity during aging progression. Additionally, aged Cpt1a KO mice revealed better cognitive skills, reduced inflammation, and oxidative stress in the hypothalamus and hippocampus. In conclusion, CPT1A in AgRP neurons appears to modulate health and protects against aging. Future studies are required to clarify whether CPT1A is a potential antiaging candidate for treating diseases affecting memory and physical activity.


Assuntos
Carnitina O-Palmitoiltransferase , Envelhecimento Saudável , Animais , Masculino , Camundongos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo
16.
J Diabetes Investig ; 15(1): 67-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847092

RESUMO

The liver synthesizes and releases bile acids into the gut. Bile acids, either directly or indirectly, inhibit agouti-related peptide (AGRP)-B cells in the pars tuberalis of the pituitary gland. AGRP-B cells are assumed to promote pancreatic insulin secretion and/or to improve insulin sensitivities in insulin sensitive organs, resulting in improved glucose tolerance.


Assuntos
Insulina , Hipófise , Humanos , Proteína Relacionada com Agouti/metabolismo , Hipófise/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Ácidos e Sais Biliares
17.
Neuroendocrinology ; 114(4): 365-385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38142691

RESUMO

INTRODUCTION: The perception of hunger is a complex physiological process that requires precise coordination between the central and peripheral tissues. METHODS: In this study, tilapia fasted for 24 h was chosen to establish a hunger model to study the mechanism of homeostasis recovery under the joint regulation of the central nervous system (CNS) and peripheral tissues. RESULTS: The gastric and intestinal contents of tilapia were predominantly depleted after a fasting period of 9 h and 24 h, respectively. The serum glucose level significantly decreased at the 9-h and 24-h fasting, respectively, and the glucokinase-dependent glucosensing mechanism in the liver was identified as well as the significant activation of phospho-AMPK. However, fasting for 24 h did not activate glucosensing mechanisms and AMPK signaling pathways in the hypothalamus. On the other hand, significant reductions were observed in the mRNA levels of the lipid synthesis-related genes fas and accα, and the serum triglyceride levels as well. The mRNA levels of npy, agrp, pomc, and cart in the hypothalamus fluctuated during the fasting period without significant differences. With in situ hybridization npy signals upregulated in the ventral zone of posterior periventricular nucleus after 24-h fasting, pomc signals enhanced in the lateral tuberal nucleus. Based on the serum metabolomic analysis, the levels of branched-chain amino acids, butyrate, and short-chain acylcarnitine decreased, while those of medium- and long-chain acylcarnitine increased. CONCLUSION: Fasting for 24 h resulted in changes in npy and pomc signals within the hypothalamus and triggered the glucosensing mechanism in the liver of tilapia. This study is beneficial for elucidating the response of neuropeptides in the CNS to the changes of nutritional factors when hungry.


Assuntos
Carnitina/análogos & derivados , Neuropeptídeo Y , Neuropeptídeos , Neuropeptídeo Y/metabolismo , Fome , Pró-Opiomelanocortina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Neuropeptídeos/metabolismo , Hipotálamo/metabolismo , Jejum , Proteína Relacionada com Agouti/metabolismo , RNA Mensageiro/metabolismo
18.
Physiol Genomics ; 56(3): 265-275, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145289

RESUMO

Agouti-related peptide (AgRP/Agrp) within the hypothalamic arcuate nucleus (ARC) contributes to the control of energy balance, and dysregulated Agrp may contribute to metabolic adaptation during prolonged obesity. In mice, three isoforms of Agrp are encoded via distinct first exons. Agrp-A (ENSMUST00000005849.11) contributed 95% of total Agrp in mouse ARC, whereas Agrp-B (ENSMUST00000194654.2) dominated in placenta (73%). Conditional deletion of Klf4 from Agrp-expressing cells (Klf4Agrp-KO mice) reduced Agrp mRNA and increased energy expenditure but had no effects on food intake or the relative abundance of Agrp isoforms in the ARC. Chronic high-fat diet feeding masked these effects of Klf4 deletion, highlighting the context-dependent contribution of KLF4 to Agrp control. In the GT1-7 mouse hypothalamic cell culture model, which expresses all three isoforms of Agrp (including Agrp-C, ENSMUST00000194091.6), inhibition of extracellular signal-regulated kinase (ERK) simultaneously increased KLF4 binding to the Agrp promoter and stimulated Agrp expression. In addition, siRNA-mediated knockdown of Klf4 reduced expression of Agrp. We conclude that the expression of individual isoforms of Agrp in the mouse is dependent upon cell type and that KLF4 directly promotes the transcription of Agrp via a mechanism that is superseded during obesity.NEW & NOTEWORTHY In mice, three distinct isoforms of Agouti-related peptide are encoded via distinct first exons. In the arcuate nucleus of the hypothalamus, Krüppel-like factor 4 stimulates transcription of the dominant isoform in lean mice, but this mechanism is altered during diet-induced obesity.


Assuntos
Fator 4 Semelhante a Kruppel , Neurônios , Camundongos , Animais , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Hipotálamo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
19.
Sci Rep ; 13(1): 22970, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151493

RESUMO

The neurobiological mechanisms that regulate the appetite-stimulatory properties of cannabis sativa are unresolved. This work examined the hypothesis that cannabinoid-1 receptor (CB1R) expressing neurons in the mediobasal hypothalamus (MBH) regulate increased appetite following cannabis vapor inhalation. Here we utilized a paradigm where vaporized cannabis plant matter was administered passively to rodents. Initial studies in rats characterized meal patterns and operant responding for palatable food following exposure to air or vapor cannabis. Studies conducted in mice used a combination of in vivo optical imaging, electrophysiology and chemogenetic manipulations to determine the importance of MBH neurons for cannabis-induced feeding behavior. Our data indicate that cannabis vapor increased meal frequency and food seeking behavior without altering locomotor activity. Importantly, we observed augmented MBH activity within distinct neuronal populations when mice anticipated or consumed food. Mechanistic experiments demonstrated that pharmacological activation of CB1R attenuated inhibitory synaptic tone onto hunger promoting Agouti Related Peptide (AgRP) neurons within the MBH. Lastly, chemogenetic inhibition of AgRP neurons attenuated the appetite promoting effects of cannabis vapor. Based on these results, we conclude that MBH neurons contribute to the appetite stimulatory properties of inhaled cannabis.


Assuntos
Cannabis , Alucinógenos , Camundongos , Ratos , Animais , Apetite , Cannabis/metabolismo , Proteína Relacionada com Agouti/metabolismo , Ingestão de Alimentos/fisiologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Alucinógenos/farmacologia
20.
Mol Metab ; 78: 101833, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925021

RESUMO

OBJECTIVE: The learned associations between sensory cues (e.g., taste, smell) and nutritive value (e.g., calories, post-ingestive signaling) of foods powerfully influences our eating behavior [1], but the neural circuits that mediate these associations are not well understood. Here, we examined the role of agouti-related protein (AgRP)-expressing neurons - neurons which are critical drivers of feeding behavior [2; 3] - in mediating flavor-nutrient learning (FNL). METHODS: Because mice prefer flavors associated with AgRP neuron activity suppression [4], we examined how optogenetic stimulation of AgRP neurons during intake influences FNL, and used fiber photometry to determine how endogenous AgRP neuron activity tracks associations between flavors and nutrients. RESULTS: We unexpectedly found that tonic activity in AgRP neurons during FNL potentiated, rather than prevented, the development of flavor preferences. There were notable sex differences in the mechanisms for this potentiation. Specifically, in male mice, AgRP neuron activity increased flavor consumption during FNL training, thereby strengthening the association between flavors and nutrients. In female mice, AgRP neuron activity enhanced flavor-nutrient preferences independently of consumption during training, suggesting that AgRP neuron activity enhances the reward value of the nutrient-paired flavor. Finally, in vivo neural activity analyses demonstrated that acute AgRP neuron dynamics track the association between flavors and nutrients in both sexes. CONCLUSIONS: Overall, these data (1) demonstrate that AgRP neuron activity enhances associations between flavors and nutrients in a sex-dependent manner and (2) reveal that AgRP neurons track and rapidly update these associations. Taken together, our findings provide new insight into the role of AgRP neurons in assimilating sensory and nutritive signals for food reinforcement.


Assuntos
Ingestão de Alimentos , Comportamento Alimentar , Animais , Feminino , Masculino , Camundongos , Proteína Relacionada com Agouti/metabolismo , Ingestão de Alimentos/fisiologia , Ingestão de Energia , Comportamento Alimentar/fisiologia , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...